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(57) ABSTRACT

Apparatus and methods for optimizing data transmission
between two hosts via a network device. The network device
initially allows a first connection to be established between
the two host devices. This first connection is logically
established directly between the host devices without modi-
fication by the network device. The network device analyzes
data transmitted via the first connection and determines
whether to allow the first connection to continue without
intervention by the network device, or whether to split the
connection into separate TCP connections with the network
device as intermediary. The network device maintains con-
nection state and emulates both host devices to allow the first
connection to be split without disrupting the communication
at either host device.
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1
APPARATUS AND METHODS FOR
OPTIMIZING NETWORK DATA
TRANSMISSION

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. Provisional
Patent Application No. 61/580,782, entitled “Intelligent TCP
Proxy”, filed Dec. 28, 2011. The entire contents of U.S.
Provisional Patent Application No. 61/580,782 are hereby
incorporated by reference.

FIELD

The described embodiments relate to the delivery of data
traffic in a computer network and, in particular, to the
delivery of data traffic in a mobile network.

BACKGROUND

The Transmission Control Protocol (TCP) provides the
backbone of the modern Internet. TCP is used to provide
ordered delivery of data between two hosts using a stateful
connection. TCP assures that one host can send a bytestream
(e.g., file, message, etc.) over an unreliable communication
medium (unreliable in the sense that delivery is not guar-
anteed) as a series of individual packets, and that the remote
host will be able to reconstruct the bytestream in the correct
order and with all the data intact. To achieve this reliability,
both hosts participate in the delivery; the sender provides a
“sequence number” in each packet it transmits, which
increases as each packet is transmitted. The sequence num-
ber is increased by an amount corresponding to the number
of bytes in the payload of each packet. This approach allows
packets to be reassembled correctly, even if they are
received out of order.

The recipient is responsible for acknowledging each byte
of data it receives using a cumulative acknowledgement
scheme. Specifically, the recipient transmits an “acknowl-
edgement number” to the sender specifying the number of
the next byte expected to be received. This also signifies to
the sender that the recipient has received all transmitted
bytes up to that indicated by the acknowledgment number.
For example, if a sender sends a packet containing four
payload bytes with a sequence number field of 10000, then
the sequence numbers of the four payload bytes are 10000,
10001, 10002 and 10003. When this packet is successfully
received, the recipient would send back an acknowledgment
number of 10004, since 10004 is the sequence number of the
next byte it expects to receive in the next packet.

By monitoring the acknowledgements coming back from
the recipient, the sender can determine when one or more
packets have been lost in transit and need to be retransmit-
ted. On top of this straightforward reliability mechanism,
TCP also implements several other important features such
as flow control and congestion avoidance.

The reliable transmission features of TCP limit its flex-
ibility. Since every packet of data is accounted for using
acknowledgements, an intermediate network device is
unable to modify the bytestream by changing individual
packets; any addition or removal of data disrupts the
sequence number of the bytes received by the recipient, and
causes a change in the acknowledgement numbers sent by
the recipient. These changed acknowledgements no longer
correspond directly to the bytes of data the sender expects to
receive, leading to instability, unnecessary retransmissions,
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degradation of network throughput as congestion controls
are enacted, and in some cases a complete breakdown of the
connection.

Therefore, if an intermediate network device is to modify
the data exchanged between two hosts, the intermediate
device generally divides the connection into two separate
TCP connections and coordinates data transmission between
the two hosts. This practice is known as “proxying” a
connection, and the intermediate device is known as a “TCP
proxy”.

Many modern web technologies employ a TCP proxy. A
classic example of a TCP proxy is a Hypertext Transfer
Protocol (HTTP) gateway, which is positioned between a
web browser client and web server to improve performance
by caching content, modifying requests to use more efficient
delivery mechanisms, and the like. The gateway does not
allow a direct connection to be established between the
client and server, instead the gateway establishes two sepa-
rate connections and acts as a TCP proxy.

Conventional HTTP gateways are generally “transparent”
(sometimes called “forced” or “intercepting”), meaning that
every connection attempted through the gateway will be
intercepted and split into two connections, but that the client
and server need not be aware of the proxy. On busy
networks, proxying a large plurality of TCP connections is
very resource intensive, making proper provisioning diffi-
cult.

SUMMARY

In a broad aspect, some embodiments of the invention
provide a method of optimizing data transmission for a
current data flow from a first host to a second host via a
network device, the method comprising: allowing establish-
ment of a first connection between the first host and the
second host for the current data flow; monitoring the current
data flow at the network device; determining whether to use
an active connection state for the current data flow; and
when the active connection state is to be used: intercepting
the current data flow in the first connection at the network
device; establishing a second connection between the first
host and the network device; establishing a third connection
between the second host and the network device; and
continuing the current data flow using the second and third
connections.

When the active connection state is not to be used, the
method may further comprise remaining in a passive con-
nection state for the current data flow, wherein in the passive
connection state the current data flow continues using the
first connection.

While determining whether to use the active connection
state, the method may further comprise deferring transmis-
sion of the at least one data packet to the second host during
at least one decision window.

The monitoring may comprise maintaining a connection
state for the current data flow, and the network device may
emulate the second host in the second connection based on
the connection state, and the network device may emulate
the first host in the third connection based on the connection
state.

The method may further comprise timing each of the at
least one decision window; and entering the active connec-
tion state for the current data flow when a length of the
determining for one of the at least one decision window
exceeds a predetermined identification period.

The determining may be based on a control signal that
indicates the active connection state is to be used.
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The method may further comprise analyzing at least one
data packet in the current data flow, wherein the determining
is based on the analysis of the at least one data packet.

The at least one data packet may comprise a plurality of
packets, and the analyzing may comprise assembling the
plurality of packets to provide payload data for the analyz-
ing.

When in the active connection state, the method may
further comprise determining that the current flow data is to
be modified.

The current flow data may comprise video data, and the
modifying may comprise transcoding the video data.

In another broad aspect, there is provided a network
device for optimizing data transmission for a current data
flow from a first host to a second host, the device compris-
ing: a memory; at least one communication interface; at least
one processor, the at least one processor configured to: allow
establishment of a first connection between the first host and
the second host for the current data flow; monitor the current
data flow at the network device; determine whether to use an
active connection state for the current data flow; and when
the active connection state is to be used: intercept the current
data flow in the first connection at the network device;
establish a second connection between the first host and the
network device; establish a third connection between the
second host and the network device; and continue the
current data flow using the second and third connections.

The at least one processor may be further configured,
when the active connection state is not to be used, to remain
in a passive connection state for the current data flow,
wherein in the passive connection state the current data flow
continues using the first connection.

The at least one processor may be further configured,
while determining whether to use the active connection
state, to defer transmission of the at least one data packet to
the second host during at least one decision window.

The at least one processor may be further configured to
maintain a connection state for the current data flow; and,
when the active connection state is used, to: emulate the
second host in the second connection based on the connec-
tion state; and emulate the first host in the third connection
based on the connection state.

The at least one processor may be further configured to:
time each of the at least one decision window; and enter the
active connection state for the current data flow when a
length of the determining for one of the at least one decision
window exceeds a predetermined identification period.

The at least one processor may determine whether to use
the active connection state based on a control signal that
indicates the active connection state is to be used.

The at least one processor may be further configured to
analyze at least one data packet in the current data flow, and
determine whether to use the active connection state based
on the analysis of the at least one data packet.

The at least one data packet may comprise a plurality of
packets, and the at least one processor may assemble the
plurality of packets to provide payload data for the analyz-
ing.

When in the active connection state, the at least one
processor may be further configured to determine that the
current flow data is to be modified.

The current flow data may comprise video data, and the
at least one processor may be configured to transcode the
video data.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the present invention will now
be described in detail with reference to the drawings, in
which:
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FIG. 1A is a simplified block diagram of an example TCP
system,

FIG. 1B is a block diagram of a prior art TCP system;

FIG. 1C is a data flow diagram for a conventional TCP
proxy, such as the system of FIG. 1B;

FIG. 2 is a block diagram of a TCP system in accordance
with an example embodiment;

FIG. 3A is an example implementation of a mobile data
network in accordance with the system of FIG. 2;

FIG. 3B is another example implementation of a mobile
data network in accordance with the system of FIG. 2;

FIG. 4 is a simplified block diagram of a network device
in accordance with an example implementation;

FIG. 5 is a simplified block diagram of a packet process-
ing element in accordance with an example implementation;

FIG. 6 is a block diagram of a slow-path module in
accordance with an example implementation;

FIG. 7 is a state diagram for a slow-path module in
accordance with an example implementation;

FIG. 8A is a communication flow diagram in a passive
mode in accordance with an example implementation;

FIG. 8B is a communication flow diagram in an active
mode in accordance with an example implementation;

FIG. 9A is an example passive state data flow diagram for
a slow-path module in accordance with an example imple-
mentation; and

FIG. 9B is an example active state data flow diagram for
a slow-path module in accordance with an example imple-
mentation.

The drawings, described below, are provided for purposes
of illustration, and not of limitation, of the aspects and
features of various examples of embodiments described
herein. The drawings are not intended to limit the scope of
the teachings in any way. For simplicity and clarity of
illustration, elements shown in the figures have not neces-
sarily been drawn to scale. The dimensions of some of the
elements may be exaggerated relative to other elements for
clarity. Further, where considered appropriate, reference
numerals may be repeated among the figures to indicate
corresponding or analogous elements.

DESCRIPTION OF EXEMPLARY
EMBODIMENTS

It will be appreciated that numerous specific details are set
forth in order to provide a thorough understanding of the
exemplary embodiments described herein. However, it will
be understood by those of ordinary skill in the art that the
embodiments described herein may be practiced without
these specific details. In other instances, well-known meth-
ods, procedures and components have not been described in
detail so as not to obscure the embodiments described
herein. Furthermore, this description is not to be considered
as limiting the scope of the embodiments described herein in
any way, but rather as merely describing implementation of
the various embodiments described herein.

The embodiments of the systems and methods described
herein may be implemented in hardware or software, or a
combination of both. These embodiments may be imple-
mented in computer programs executing on programmable
computers, each computer including at least one processor,
a data storage system (including volatile memory or non-
volatile memory or other data storage elements or a com-
bination thereof), and at least one communication interface.
For example, and without limitation, the various program-
mable computers may be a server, network appliance, set-
top box, embedded device, computer expansion module,
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personal computer, laptop, personal data assistant, cellular
telephone, smartphone device, tablet computer or any other
computing device capable of being configured to carry out
the methods described herein.

Program code is applied to input data to perform the
functions described herein and to generate output informa-
tion. The output information is applied to one or more output
devices, in known fashion. In some embodiments, the com-
munication interface may be a network communication
interface. In embodiments in which elements of the inven-
tion are combined, the communication interface may be a
software communication interface, such as those for inter-
process communication (IPC). In still other embodiments,
there may be a combination of communication interfaces
implemented as hardware, software, and combination
thereof.

Each program may be implemented in a high level
procedural or object oriented programming or scripting
language, or both, to communicate with a computer system.
However, alternatively the programs may be implemented in
assembly or machine language, if desired. The language
may be a compiled or interpreted language. Each such
computer program may be stored on a storage media or a
device (e.g. flash memory, magnetic disk, optical disc),
readable by a general or special purpose programmable
computer, for configuring and operating the computer when
the storage media or device is read by the computer to
perform the procedures described herein. Embodiments of
the system may also be considered to be implemented as a
non-transitory computer-readable storage medium, config-
ured with a computer program, where the storage medium so
configured causes a computer to operate in a specific and
predefined manner to perform the functions described
herein.

Furthermore, the systems and methods of the described
embodiments are capable of being distributed in a computer
program product including a physical, non-transitory com-
puter readable medium that bears computer usable instruc-
tions for one or more processors. The medium may be
provided in various forms, including one or more diskettes,
compact disks, tapes, chips, magnetic and electronic storage
media, and the like. The computer useable instructions may
also be in various forms, including compiled and non-
compiled code.

As described above, proxying a large plurality of TCP
connections can be very resource intensive on busy net-
works, making proper provisioning difficult. Nevertheless,
in many cases, even if a conventional HT TP gateway is only
able to serve 10% of web requests from a local cache
(obviating the need to using more expensive external net-
work resources), it may still be worth the cost of proxying
100% of the connections.

However, if the gateway was able to selectively proxy
only the 10% of connections that it is capable of servicing
from cache, and to allow the remaining 90% of connections
to pass through unmodified, the gateway in theory could be
used to handle ten times more traffic than a conventional
HTTP gateway. This would greatly reduce the cost of
proxying while maintaining the benefit. Unfortunately, this
is not possible with conventional TCP proxies, due to a
Catch-22 type situation. Specifically, the proxy needs pay-
load data transmitted after TCP connection establishment to
determine if it should service the request, but it can only act
as proxy if it intervenes immediately at connection estab-
lishment (i.e., before payload data is transmitted).

The described embodiments generally provide systems
and methods capable of passively monitoring a large number
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of TCP connections and actively proxying selected connec-
tions after the TCP connection is established, if desired.

The embodiments described herein may be used in con-
junction with systems and methods for providing congestion
estimation in a communications network, which can be
found, for example, in co-pending U.S. application Ser. No.
13/053,565, the entire contents of which are hereby incor-
porated by reference. The embodiments described herein
may also be used in conjunction with systems and methods
for managing multimedia traffic in wired and wireless com-
munication networks, which can be found, for example, in
co-pending U.S. application Ser. No. 13/631,366, the entire
contents of which are hereby incorporated by reference.

Reference is first made to FIG. 1A illustrating a block
diagram of a TCP system 100. System 100 generally com-
prises a first host 110 and a second host 130 engaged in data
communication. System 100 also comprises a network 120
coupled between the first host 110 and the second host 130.

In the illustrated embodiments, the first host 110 and
second host 130 each may be any computing device, com-
prising a processor and memory, and capable of communi-
cation via a mobile data network. For example, the first host
110 or second host 130 may be a personal computer,
workstation, server, tablet computer, mobile computing
device, personal digital assistant, laptop, smart phone, video
display terminal, gaming console, electronic reading device,
portable electronic device, or a combination of these. The
first host 110 is generally operable to send or transmit
requests, such as, for example, requests for media content.
The second host 130 is generally operable to receive request
and to transmit content in response to the requests.

In various embodiments, the first host 110 comprises a
client which may be an application, such as a computing
application, application plug-in, a widget, mobile device
application, Java™ application, or web browser executed by
the device 110 in order to send or transmit data.

The second host 130 may comprise one or more media
servers for providing access to multimedia content, such as
video and audio content. Second host 130 may be operable
to initiate and maintain one or more streaming sessions. The
content may comprise a wide variety of user-generated
content, including movies, movie clips, TV shows, TV clips,
music videos, video blogging and short original videos, etc.
Examples of the second host 130 include websites such as
YouTube™ and Netflix™, etc. Second host 130 may also
store a plurality of versions of the same multimedia content,
such as, for example, different formats or resolutions of the
same multimedia content. For example, a media server may
store the same movie clip in two or more video resolutions,
such as 480p, 720p, 1080i or 1080p. Likewise, the media
server may store the same movie clip in two or more video
formats, such as Windows Media Video or Moving Picture
Experts Group MPEG-4 Advanced Video Coding (MPEG-4
AVQ).

Network 120 may comprise one or more data communi-
cation networks capable of carrying data between the first
host 110 and the second host 130. Data networks may
include the Internet, public switched telephone network
(PSTN), or any other suitable local area network (LAN) or
wide area network (WAN), mobile data networks (e.g.,
Universal Mobile Telecommunications System (UMTS),
3GPP Long-Term Evolution Advanced (LTE Advanced),
Worldwide Interoperability for Microwave Access (Wi-
MAX), etc.) and combinations thereof.

Network 120 may comprise one or more server, router or
network device 122 equipped with a processor and memory
storing, for example, a database or file system. Although
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only one network device 122 is shown for clarity, there may
be multiple network devices 122 distributed over a wide
geographic area and connected via, for example, network
120.

Typically, a TCP connection is established between the
first host 110 and the second host 130 using a three-way
handshake. The second host 130 listens on a port, and opens
the port for connections. Once the connection is opened
initially, the first host 110 may send a synchronize message
(“SYN”) to the second host 130. In response, the second host
130 may reply with an acknowledgement to the synchronize
message (“SYN-ACK”). Finally, the first host 110 sends an
acknowledgment message (“ACK”) back to the second host
120 establishing the TCP connection.

Once the TCP connection is established, the second host
130 is operable to commence a media streaming session in
response to a request for multimedia content from the first
host 110, as described further herein. The request may
traverse a mobile data network, such as network 120, and be
relayed via the network device 122. Network device 122
may deny the request, modity it, or transmit it further to the
second host 130, which connects to a suitable network for
delivering the request.

Referring now to FIG. 1B, there is illustrated a block
diagram of a prior art TCP system. TCP system 180 includes
host device 110, host device 130 and a proxy device 190.

Proxy device 190 is an intermediate network computing
device, located inline on the path between two host devices
110 and 130, which manages two independent TCP connec-
tions, allowing proxy device 190 to analyze, copy, and
modify the data transmitted between the two hosts. Gener-
ally, TCP proxy module 196 is a software application that
opens TCP sockets 192 and 194 in response to intercepting
a connection request from one of host device 110 or 130.
TCP proxy module 196 then reads from each socket and
writes to the other, possibly modifying the data (bytestream)
if appropriate.

Data from host device 110 is delivered to TCP socket 192
using standard TCP communication. TCP proxy module 196
then reads the data received by TCP socket 192 and copies
or modifies the data as appropriate before writing the
modified data to TCP socket 194, which then sends it to host
device 130.

TCP connections can generally be broken down into three
phases: connection establishment, data transfer, and connec-
tion teardown. The behavior of a conventional TCP proxy in
each of these phases is described with reference to FIG. 10.

Referring now to FIG. 1C, there is illustrated a data flow
diagram for a conventional TCP proxy, such as proxy device
190.

Connection establishment begins at Al as proxy device
190 intercepts a connection establishment request (SYN
packet) from host device 110 originally destined for host
device 130.

Proxy device 190 receives the SYN packet from host
device 110 and initiates a connection establishment for a
connection B between proxy device 190 and host device
130, by sending a second SYN packet at B1.

Proxy device 190 transmits a SYN ACK acknowledgment
packet to host device 110 at A2.

At B2, host device 130 also transmits a SYN ACK
acknowledgment packet to proxy device 190 in response to
the second SYN packet, thus establishing the second con-
nection.

Some TCP proxies may wait for a response from host
device 130 before responding to host device 110, or in some
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cases wait to receive data from host device 110 before
initiating a connection with host device 130.

Host device 110 transmits an ACK at A3, establishing
connection A. Similarly, proxy device 190 transmits an ACK
at B3, establishing connection B.

Once both connections are established, data can be trans-
ferred between the host devices 110 and 130 via the proxy
device 190, and the devices enter the data transfer phase.

In the data transfer phase, which begins at A4, host device
110 sends data packets which are received by proxy device
190 (e.g., at TCP socket 192). Whenever a data packet is
received, the proxy device 190 sends an acknowledgement
packet (ACK) to the host device 110, and then delivers the
data to the TCP proxy module 196. The TCP proxy module
196 then performs any processing, if needed, and writes the
data to the TCP socket 194 to be sent to the host device 130.
The same process is carried out in reverse for communica-
tions originating from host device 130 to host device 110.
Since each connection is technically independent, ACKs
will always be received and generated locally.

As seen in FIG. 1C, data packets are transmitted from host
device 110 to proxy device 190 at A6, A7 and A10. Proxy
device 190 forwards the data at B6, B7 and B10, and
transmits ACK packets at A8, A9 and All.

Upon completion of the data transfer phase, connection
teardown can be initiated by host device 110 by a teardown
packet (e.g., a RN or RST packet) to proxy device 190 at
A12. TCP socket 192 of proxy device 190 acknowledges the
teardown request locally at A13 and forwards the teardown
request to TCP proxy module 196. TCP proxy module 196
will generally initiate teardown of the connection with host
device 130 by sending a dose command to TCP socket 194,
which transmits a RN packet to host device 130 at B12. Host
device 130 acknowledges the teardown request by transmit-
ting a FIN, ACK packet at B13. A corresponding FIN, ACK'
packet is forwarded by proxy device 190 to host device 110
at A14. Receipt of the RN, ACK and RN, ACK' packets is
acknowledged at B14 and A15, respectively.

Occasionally, a TCP proxy module 196 may keep one
connection active longer than the other, for example, in
anticipation of re-using the connection in the future.

Generally, proxy device 190 participates in connection
establishment, data transfer, and connection teardown
according to packets received from host device 110 and 130.
Each connection (A and B) is managed independently using
local ACKs, and data is copied back and forth via the TCP
proxy module 196. Connections A and B are fully indepen-
dent of each other. That is, host devices 110 and 130 do not
directly exchange unmodified packets with each other.

Reference is next made to FIG. 2, illustrating a block
diagram of a TCP system 200 in accordance with some
embodiments. System 200 generally comprises a network
device 220 that interfaces, by way of one or more router 225,
between one or more delivery networks and a mobile data
network 202.

System 200 comprises client devices 210, which may be
any networked computing devices such as the first host
device 110 of FIG. 1A. In this exemplary embodiment, the
client devices 210 may request data, such as, for example,
multimedia or media content, from data servers 230.

Advertising content delivery network (CDN) 240, pri-
mary delivery network 242, third party CON 244, service
provider CDN 246, and mobile data network 202 may
comprise data networks capable of carrying data, such as the
Internet, public switched telephone network (PSTN), or any
other suitable local area network (LAN) or wide area net-
work (WAN). In particular, mobile data network may com-
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prise a Universal Mobile Telecommunications System
(UMTS), 3GPP Long-Term Evolution Advanced (LTE
Advanced) system, Worldwide Interoperability for Micro-
wave Access (WiMAX) system, other 3G and 4G networks,
and their equivalent and successor standards.

Mobile data network 202 may comprise a plurality of base
transceiver stations 205, which are operable to communicate
with individual client devices 210.

Networks 240, 242, 244 and 246 may comprise content
delivery networks. In some embodiments, one or more of
networks 240, 242, 244 and 246 may be merged or incor-
porated into one another as part of a single network.

In general, a content delivery network comprises a plu-
rality of nodes. Each node may have redundant cached
copies of content that is to be delivered upon request. The
content may be initially retrieved from a data server 230 and
subsequently cached at each node according to a caching or
retention policy.

CDN nodes may be deployed in multiple geographic
locations and connected via one or more data links (e.g.,
backbones). Each of the nodes may cooperate with each
other to satisty requests for content by clients while opti-
mizing delivery. Typically, this cooperation and delivery
process is transparent to clients.

In a CDN, client requests for content may be algorithmi-
cally directed to nodes that are optimal in some way. For
example, a node that is geographically closest to a client
may be selected to deliver content. Other examples of
optimization include choosing nodes that are the fewest
number of network hops away from the client, or which have
the highest current availability.

Data server 230 may comprise one or more servers
equipped with a processor and memory storing, for example,
a database or file system. Data server 230 may be any server
that can provide access to data, such as media content, upon
request by, for example, storing the content, such as the
second host 130 of FIG. 1A.

Although the exemplary embodiments are shown primar-
ily in the context of mobile data networks, it will be
appreciated that the described systems and methods are also
applicable to other network configurations. For example, the
described systems and methods could be applied to data
networks using satellite, digital subscriber line (DSL) or
data over cable service interface specification (DOCSIS)
technology in lieu of, or in addition to a mobile data
network.

Referring now to FIGS. 3A and 3B, there are shown
example implementations of a mobile data network in
system 200.

Referring to FIG. 3A in particular, there is illustrated a
mobile data network 302A, which may be a “3G” imple-
mentation of mobile data network 302 using a standard such
as Universal Mobile Telecommunications System (UMTS).

Mobile data network 302A comprises support nodes
including a serving GPRS support node (SGSN) 364 (where
GPRS stands for General Packet Radio Service) and a
gateway GPRS support node (GGSN) 362. Mobile data
network 302A further comprises a radio network controller
(RNC) 366. Various other network elements commonly
deployed in a 3G mobile data network are omitted for
simplicity and clarity.

Each mobile data network 302A may comprise a plurality
of support nodes and radio network controllers.

Reference points, node taps and feeds (365, 367 and 369)
may be provided for each SGSN 364, RNC 366 and base
transceiver station 305, and used to provide input data and
statistics regarding, for example, user plane data and control
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plane data to a feed aggregation server 340. Data may be
gathered inline using one or more respective approaches.

Generally, user plane data may be considered to be
“payload” data or content, such as media data. Conversely,
control plane data may be signaling and control information
used during a data communication session.

In a first approach, an inline, full user plane traffic mode
may be used (as shown in FIG. 3A), in which full, but
separate, user plane and control plane data is monitored and
provided to network device 220, for example via feed
aggregation server 340. In such an approach, the monitoring
may be active in the user plane, but passive in the control
plane. One example of control plane monitoring is the use of
a Radio Access Network (RAN) data feed 367 to capture and
provide signaling information from RNC 366.

The availability of control plane data facilitates better
optimization by network device 220, by providing informa-
tion about device mobility and location, among other things.

In another approach, an inline, partial user plane traffic
mode may be used (not shown), in which another inline node
(e.g., gateway or deep packet inspection router) redirects a
subset of monitored traffic to the network device 220. In this
approach, control plane data may not be available.

In a further approach, an inline, full and combined user
and control plane traffic mode may be used (not shown), in
which user and control plane data is monitored and redi-
rected in a combined feed.

Accordingly, input data and statistics may be obtained
from the user plane (e.g., content data) or from the control
plane used for signaling information with the client device.
The monitored data may be in the form of conventional
Internet Protocol (IP) data traffic or in the form of tunneled
data traffic using a protocol such as Generic Routing Encap-
sulation (GRE), GPRS Tunnelling Protocol (GTP), etc.

Control plane data may be used to extract data about the
client device, including location and mobility, device type
(e.g., International Mobile Equipment Identity [IMEI]) and
subscriber information (e.g., International Mobile Sub-
scriber Identity [IMSI] or Mobile Subscriber Integrated
Services Digital Network Number [MSISDN]). Control
plane data may also reveal information about the RAN,
including number of subscribers using a particular node,
which can be an indicator of congestion.

Referring now to FIG. 3B, there is illustrated a mobile
data network 302B, which may be a “4G” implementation of
mobile data network 202 using a standard such as 3GPP
Long Term Evolution (LTE). Mobile data network 302B is
generally analogous to mobile data network 302A, except
that network elements with different capabilities may be
provided.

Mobile data network 302B comprises gateways including
a serving gateway 384, and a packet gateway 382. Mobile
data network 302B further comprises an Evolved Node B
(eNodeB) 386 and a mobile management entity (MME) 388.
Various other network elements commonly deployed in a 4G
mobile data network are omitted for simplicity and clarity.

Each mobile data network 302B may comprise a plurality
of gateways, eNodeBs and MMEs.

Reference points, node taps and feeds (384, 387 and 389)
may be provided for each MME 388, eNodeB 386 and base
transceiver station 305, and used to provide input data and
statistics to a feed aggregation server 340. Data may be
gathered inline using one or more respective approaches as
described herein.
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Reference is next made to FIG. 4, illustrating a simplified
block diagram of a network device 400, which is an example
implementation of network devices 122, 220 of FIGS. 1 to
4.

Network device 400 is generally configured to identify
media sessions in generic network data traffic, to permit
selective media session-based policy execution and traffic
management of in-progress communication sessions
(“flows”). This is a significant enhancement over conven-
tional per-flow or per-subscriber application of policies, in
which policies are applied to individual flows (on a per
packet or per flow basis) or applied to all data for a particular
subscriber (per subscriber). Network device 400 may be
configured to determine and enforce media session-based
policies to balance the overall quality of experience (QoE)
and network utilization for all users, based on the service
provider’s policy constraints. Determinations and enforce-
ment can be performed by working in a closed-loop mode,
using continuous real-time feedback to optimize and tune
individual media sessions. In conjunction with detailed
media session analysis and reporting, network device 400
may provide control and transparency to service providers
attempting to manage rapidly growing media traffic on their
network.

To accomplish this, network device 400 performs a num-
ber of functions that would conventionally be implemented
via separate interconnected physical appliances. Implemen-
tation in an integrated architecture, which supports a wide
range of processor options, is beneficial in order to reduce
cost while improving performance and reliability. Accord-
ingly, network device 400 may comprise one or more switch
elements 410 one or more media processing elements 420,
one or more packet processing elements 430, and one or
more control elements 440 in an integrated platform. In
some embodiments, the function of one or more of switch
elements 410, media processing elements 420, packet pro-
cessing elements 430 and control elements 440 may be
integrated, such that a subset of the elements implements the
entire functionality of media service gateway 400 as
described herein. In some embodiments, one or more of the
elements may be implemented as a server “blade”, which
can be coupled together via a backplane. Each of the
elements may comprise one or more processors and memo-
ries.

Switch elements 410 may be configured to perform con-
trol and data plane traffic load balancing across packet
processing elements. Each switch element 410 may com-
prise one or more load balancers configured to distribute
traffic from a large number of subscribers evenly across one
or more packet processing elements 430. The traffic may be
re-balanced between one or more packet processing ele-
ments 430 in the event of a packet processing blade 430
failure.

Switch elements 410 may be configured to operate the
network device 400 in one or more of a number of inter-
section modes. The intersection modes may permit passive
monitoring of traffic, active management of traffic, or a
combination thereof, for example by using an appropriate
virtual local area network (VLAN) configuration.

Switch elements 410 may provide input/output facilities
for intersecting multiple data links within a network in a
transparent, bump-in-the-wire configuration. In order to
accomplish this, switch elements 410 may mark packets
when they are received by the network device 400 in order
to identify the source data link, and the direction. Such
internal marking can be reversed or deleted before the
respective packets are re-enqueued on the wire. Packets may
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be internally marked in a number of ways, such as VLAN
tags, reversible manipulation of source or destination or both
MAC addresses, and adding encapsulation headers (using
standard or proprietary protocols). The additional informa-
tion encoded in the packet marking allows each packet to
carry the information necessary to direct it to the correct
output port without the need for large amounts of internal
storage or complex, time-consuming lookups.

Media processing element 420 may be configured to
perform inline, real-time, audio and video transcoding of
selected media sessions. Media processing elements 420
may also be configured for an off-line, batch conversion
workflow mode. Such an offline mode can be used to
generate additional streams for a particular media content
item at a variety of bit rates and resolutions as idle resources
become available. This can be desirable where a particular
media content item is frequently delivered to different client
devices in a variety of network conditions.

Media processing element 420 may comprise one or more
general purpose or specialized processors. Such specialized
processors may be optimized for media processing, such as
integrated media processors, digital signal processors, or
graphics processing units.

Such processors operate on media processing element 420
and may implement individual elementary stream transcod-
ing on a per-segment basis. A segment can be defined as a
collection of sequential media samples, which starts at a
selected or random access point. The processors may
exchange control and configuration messages and com-
pressed media samples with one or more packet processing
elements 430.

Media processing element 420 may generally perform bit
rate reduction. In some cases, media processing element 420
may perform sampling rate reduction (e.g., spatial resolution
and/or frame rate reduction for video, reducing sample
frequency and/or number of channels for audio). In some
other cases, media processing element 420 may perform
format conversion for improved compression efficiency,
whereby the output media stream being encoded may be
converted to a different, more efficient format than that of the
input media stream being decoded (e.g., H.2641AVC vs.
MPEG-4 part 2).

In some cases, a plurality of processors may operate
concurrently in the same media processing element 420 to
provide multi-stream transcoding. In some other cases, the
processors for a single media session may be invoked across
multiple hardware resources, for example to parallelize
transcoding over multiple cores or chips, or to relocate
processing in case of hardware failure. Parallelization may
occur at the direction of a session controller running on
packet processing element 430.

In some cases, media streams may be modified to com-
prise alternative media stream content, such as inserted
advertisements or a busy notification signal.

Control elements 440 may generally perform system
management and (centralized) application functions. System
management functions may include configuration and com-
mand line interfacing, Simple Network Monitoring Protocol
(SNMP) alarms and traps and middleware services to sup-
port software upgrades, file system management, and system
management functions. Control elements 440 may generally
comprise a processor and memory configured to perform
centralized application functions. More particularly, control
element 440 may comprises a global policy engine, a
network resource model (NRM) module, a transcoder
resource manager (XRM) and a statistics broker.
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Centralization of this processing at control element 440
may be advantageous as, due to load balancing, no single
packet processing element 430 generally has a complete
view of all sessions within a given network device, nor a
view of all network devices.

The policies available at the network device 400 may be
dynamically changed by, for example, a network operator. In
some cases, the global policy engine of the control element
440 may access policies located elsewhere on a network. For
example, the global policy engine may gather media session
policies based on the 3rd Generation Partnership Project
(3GPP) Policy Control and Charging (PCC) architecture
ecosystem (e.g., with a Policy and Charging Rules Function
(PCRF)). In such embodiments, the policy system may
enforce policy (i.e., carry out a Policy Control Enforcement
Function (PCEF) with Application Function (AF), or Appli-
cation Detection and Control (ADC)).

The global policy engine may maintain a set of locally
configured node-level policies, and other configuration set-
tings, that are evaluated by a rules engine in order to perform
active management of subscribers, locations, and media
sessions. Media sessions may be subject to global con-
straints and affected by dynamic policies triggered during
the lifetime of a session. Accordingly, the global policy
engine may keep track of live media session metrics and
network traffic measurements by communicating with the
NRM module. The global policy engine may use this
information to make policy decisions when each media
session starts, throughout the lifetime of the media session,
or both, as the global policy engine may adjust polices in the
middle of a media session due to changes, e.g. in network
conditions, changes in business objectives, time-of-day, etc.

The global policy engine may utilize device data relating
to the identified client device, which can be used to deter-
mine device capabilities (e.g., screen resolution, codec sup-
port, etc.). The device database may comprise a database
such as Wireless Universal Resource File (WURFL) or User
Agent Profile (UAProf).

The global policy engine may also utilize subscriber
information. In some cases, subscriber information may be
based on subscriber database data obtained from one or
more external subscriber databases. Subscriber database
data may include quotas and policies specific to the user
and/or a subscription tier. The subscriber database may be
accessed via protocols such as Diameter, Lightweight Direc-
tory Access Protocol (LDAP), web services or other propri-
etary protocols. Subscriber database data may be enhanced
with subscriber information available to the network device
400, such as a usage pattern associated with the subscriber,
types of multimedia contents requested by the subscriber in
the past, the current multimedia content requested by the
subscriber, time of the day the request is made and location
of the subscriber making the current request, etc.

A by-product of location-based and media-session based
policy is that location- and session-related measurements,
such as bandwidth usage, QoE measurements, transcoding
efficiency measurements, and network congestion status can
be continuously computed and made available in real-time
for the timeliness of policy decisions. Network device 400
may implement these functions through the NRM module.

The NRM module may implement a hierarchical sub-
scriber and network model and load detection system that
receives location and bandwidth information from packet
processing elements 430 or from external network nodes,
such as radio access network (RAN) probes, to generate and
update a real-time model of the state of a mobile data
network, in particular congested domain, e.g. sectors. The

10

15

20

25

30

35

40

45

50

55

60

65

14

network model may be based on data from at least one
network domain, where the data may be collected by feed
aggregation server 340 using one or more node feeds or
references points. The NRM module may implement a
location-level congestion detection algorithm using mea-
surement data, including location, RTT, throughput, packet
loss rates, window sizes, and the like from packet processing
elements 430. The NRM module may then provide the
global policy engine with the currently modeled cell load for
one or more cells.

NRM module may also receive per-session statistics such
as session bandwidth utilization and quality metrics from
packet processing elements 430 for ongoing session tuning
and aggregate limit control. It may also receive updates from
a control plane processor to enable mapping subscribers and
associated traffic and media sessions to locations.

XRM may cooperate with the global policy engine to
allocate a media processor from the pool of media proces-
sors available in the system, and to identify the available
transcoding capabilities to other elements of the network
device 400, in terms of supported configurations and
expected bitrate and quality levels. Resource allocation
function may fulfill requests from the global policy engine
for transcoding resources and manage the status of the media
processors. It may determine free media processors when a
session is complete, receive updates on the state of the media
processors and make determinations about turning on or off
processors.

XRM maintains information about the media processing
capabilities of the media processors, and available software
versions, and can be configured to advertise these capabili-
ties to other elements of the network device 400. It may have
a role in deciding appropriate transcoding configurations,
both initially and dynamically throughout a session.

Statistics broker may be configured to generate and output
statistics and report data, such as call data records (CDR) or
user data records (UDR) regarding the operation of the
network device 400 to a remote device. Reported data may
include data such as transcoding resolutions, bitrates, etc.
Additional reported data may include data used by an
analytics engine as described in co-pending U.S. patent
application Ser. No. 13/191,629, the entire contents of which
are hereby incorporated by reference.

Packet processing element 430 may be generally config-
ured to analyze network traffic across all layers of the
TCP/IP (or UDP/IP, or other equivalent) networking stack,
identify media sessions, and apply policy. To facilitate
processing with minimal latency and maximum throughput,
packet processing workloads may be divided into fast-path
and slow-path modules, which provide separate threads of
execution. Using a single thread of execution to process
every packet may result in excessive latency for packets that
require significant processing and also fail to take advantage
of parallelization.

Referring now to FIG. 5, there is illustrated a simplified
block diagram of a packet processing element, which is an
example implementation of the packet processing element
430 of FIG. 4.

Packet processing may be divided into two (or more
layers), where the base layer may be processed in a fast-path
module 510 and one or more additional layers processed in
a slow-path module 520. The fast-path module 510 imple-
ments a first stage of packet processing, which requires only
a minimal amount of computational effort. Packets that do
no require advanced processing may be forwarded immedi-
ately at this stage and are re-enqueued “back to the wire”
with very low latency. Packets that require additional pro-
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cessing can be forwarded to a slow-path module 520 for
deeper processing. Slow-path processing may be performed
independently of, or in parallel with, the fast-path process-
ing, such that slow-path processing does not block or impede
fast-path processing.

There may be one or more fast-path modules 510 per
packet processing element 430, Fast-path module 510 may
receive packets from, such as, for example, a network
interface, a load balancer, etc. Fast-path module 510 may
implement a high performance tinier system in order to
“time-out” or expire flows and media sessions. Fast-path
module 510 may identify and parse IP layer data (IPv4/IPv6)
in each packet, perform IP defragmentation, and associate
the packets with their appropriate layer-4 UDP or TCP flows.

The fast-path module 510 may support multiple flow
states, such as “forward”, “tee”, “vee”, and “drop”. In the
forward state, packets are re-enqueued to the network inter-
face for immediate transmission, without processing by
slow-path module 520. Fast-path module 510 may look up
a subscriber or flow information associated with the packet
and decide whether the packet should be forwarded based on
such information.

In the tee state, packets are both re-enqueued to the
network interface for immediate transmission and copied to
a slow-path module 520 for further processing. In the vee
state, packets are delivered to a slow-path module 520 for
further processing. After processing, the slow-path module
520 may return one or more packets to fast-path module 510
to be re-enqueued to the network interface for transmission.
Accordingly, in the vee or inline mode, packets may be
considered as being processed inline, that is, processed first
before being forwarded in modified or unmodified form to
the original destination.

Fast-path module 510 may implement packet marking,
governed by policy. Marking is performed to manage net-
work traffic by assigning different traffic priorities to data.
Fast-path module 510 may also implement shaping and/or
policing, in accordance with a policy. Shaping and policing
are tools to manage network traffic by dropping or queuing
packets that would exceed a committed rate. Marking,
shaping and policing may be subscriber-based, device-
based, location-based, or media-session based, for example,
where all flows belonging to a particular location or to a
particular device or media session may be marked, policed
and/or shaped identically.

Generally, a slow-path module 520 sends and receives
messages to and from a fast-path module 510. Slow-path
module 520 parses the application layer of received/sent
packets, and executes policy based on subscriber, device,
location or media session analysis and processing, for
example, as determined by the slow-path processing.

Reference is next made to FIG. 6 illustrating a simplified
block diagram of a slow-path module, which is an example
implementation of a slow-path module 520 of FIG. 5. The
slow-path module 520 may comprise a transport layer
processor 610, an application processor 620 and a container
processor 630. Slow-path module 520 may further comprise
a local policy engine 640 and QoFE and statistics engine 650.

Transport layer processor 610 may parse the transport
layer (e.g. TCP, UDP, etc.) and keep track of when packets
are sent and received, including when packets are acknowl-
edged (or lost) by the client, to permit modeling of the client
video buffer, for example, as described in U.S. application
Ser. No. 13/231,497, entitled “Device with video buffer
modeling and methods for use therewith”, the entire con-
tents of which are hereby incorporated by reference. Trans-
port layer processors 610 may also reconstruct the data for
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the application layer and invoke appropriate application
layer processors (e.g., HI'TP) by examining incoming data
from both directions. Additional features of transport layer
processor 610 are described further herein with reference to
FIGS. 7 to 9B. In some embodiments, transport layer
processor 610 may provide functions associated with a TCP
proxy as described herein, in conjunction with other ele-
ments of slow-path module 520.

Application processor 620 may be configured to operate
on certain types of detected application layer content, such
as HTTP, RTSP and RTMP. Once the application type has
been identified, transport layer processors 610 may largely
delegate subsequent payload parsing to the application layer
processors 620. Application layer processors 620 may be
responsible for identifying and delegating to appropriate
session controllers when media sessions are detected, and
for relating flows, characteristic interactions and streams to
particular sessions.

A media session may generally be considered to have
been identified once sufficient traffic relating to that media
session has been observed at the application layer. In most
cases, the application layer protocols used for media stream-
ing can generally be identified by analyzing the first few
bytes of payload data. After identifying the application
payload, the payload can be parsed to find the media content,
if any. This can be performed by dividing the communica-
tion into independent interactions, which may correspond to
individual request/response pairs. Each interaction is evalu-
ated to determine if the content is streaming media. If the
interaction contains streaming media, it is further analyzed
to extract media characteristics. Those interactions sharing
common media characteristics may be encapsulated into
streams. A media session may comprise a collection of one
or more streams.

Container processor 630 may parse, analyze and process
media containers such as FLV, MP4, ASF and the like. In
some variant embodiments, it may also parse, analyze and
process associated metadata such as gzipped content, mani-
fest files, and the like. A container processor can analyze
media containers and associated metadata without produc-
ing output, for statistics collection or QoE calculation. A
container processor can also produce a new media container,
which may differ from the source container in its format or
content, via de-multiplexing, transcoding, and re-multiplex-
ing. A container processor can also produce new metadata.
The decision of whether to analyze or produce a new
container can be governed by policy. Generally, media
sessions should be identified relatively soon after the con-
tainer processor starts parsing the input container.

Local Policy Engines 640 (LPE) may be deployed on
every packet processing element 430 and act as a Policy
Enforcement Points (PEP). LPE 640 sends policy requests to
the global policy engine of control element 440 and receives
and processes policy responses from the global policy
engine. LPE 640 may provide local policy decisions for
slow-path module 520 allowing slow-path module 520 to
implement access control (i.e. whether to allow the media
session), re-multiplexing, request-response modification,
client-aware buffer shaping, transcoding, adaptive streaming
control, in addition to the more conventional per-flow action
such as marking, policing/shaping and the like. Media
session policy actions may be further scoped, that is, applied
only to specific sites, devices, resolutions, or constrained,
that is, subject to minimum/maximum bit rate, frame rate,
QokE targets, resolution, and the like, as described herein.

Slow-path module 520 may implement access control, in
accordance with a policy. In situations where network
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resources are scarce and/or the QoE for the new media
session is expected to be poor, an access control policy may
deny service to the new media session. In addition to
denying a media session, providing some form of notifica-
tion to the subscriber such as busy notification content may
reduce the negative impact of the policy on the subscriber’s
satisfaction.

Slow-path module 520 may implement re-multiplexing in
accordance with a policy. A re-multiplexing policy can
convert a media session from one container format to
another. This action may be useful to allow for the future
possibility of transcoding the media session or to convert the
media format to align with the client device’s capabilities.

Slow-path module 520 may implement request-response
modification, in accordance with a policy. Request-response
modification may involve moditying either the client request
or the response. For example, request-response modification
may replace requests for high definition content with similar
requests for standard definition content.

Slow-path module 520 may implement client-aware buf-
fer shaping, in accordance with a policy. Client-aware buffer
shaping uses the client buffer model generated by QoE and
statistics engine 650 to prioritize computing and network
resources within the network device, to ensure smooth
playback for all client devices that are served concurrently.
For example, if client A has 10 seconds of content in a buffer,
client B has 60 seconds of content in a buffer, and client C
has 2 seconds of content in a buffer, client-aware buffer
shaper may prioritize transmission for client C ahead of
transmission for clients A and B, and further prioritize client
A ahead of client B.

Slow-path module 520 may implement transcoding, in
accordance with a policy. When a transcode policy action is
selected for the session, the session controller may perform
dynamic control of a transcoder to conform to policy targets
and constraints. In some cases, it may further implement a
feedback control mechanism for a video transcoder to ensure
that the media session achieves targets and constraints set
out in the policy engine, such as a transcoded video bit rate,
transcoded video QoE, etc. The controller reevaluates its
control decisions periodically or when it receives a policy
update.

In some cases, slow-path module 520 may support allow-
ing a media session to be initially passed through unmodi-
fied, but later transcoded due to changes in policy, network
conditions including sector load and/or congestion, or the
measured QoE. Control elements 440 may also be able to
move a transcode session from one resource to another, for
example if a less loaded resource becomes available. As
such, media resources may be allocated by the control
elements 440 on a segment basis, rather than for an entire
elementary stream.

Slow-path module 520 may also implement adaptive
streaming control, in accordance with a policy. Adaptive
stream control may employ a number of tools including
request-response modification, manifest editing, conven-
tional shaping or policing, and transcoding. For adaptive
streaming, request-response modification may replace client
segment requests for high definition content with similar
requests for standard definition content. Manifest editing
may modify the media stream manifest files in response to
a client request. Manifest editing may modify or reduce the
available operating points in order to control the operating
points that are available to the client. Accordingly, the client
may make further requests based on the altered manifest.
Conventional shaping or policing may be applied to adaptive
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streaming to limit the media session bandwidth, thereby
forcing the client to remain at or below a certain operating
point.

The QoFE and statistics engine 650 may generate statistics
and QoE measurements for media sessions, may provide
estimates of bandwidth required to serve a client request and
media stream at a given QoE, and may make these values
available as necessary within the system. Examples of
statistics that may be generated comprise, e.g., bandwidth,
site, device, video codec, resolution, bit rate, frame rate, clip
duration, streamed duration, audio codec, channels, sam-
pling rate, and the like. QoE measurements computed may
comprise, e.g., delivery QoE, presentation QoE, and com-
bined QoE.

The raw inputs used for statistics and QoE measurements
can be extracted from the traffic processors at various levels,
including the transport, application, and media container
levels. For example, in the case of a progressive download
over HTTP, the container processor detects the locations of
the boundaries between video frames and, in conjunction
with the transport processor, determines when entire media
frames have been acknowledged by the subscriber device to
have arrived. The application processor provides informa-
tion on which client device is being used, and playback
events, such as the start of playback, seeking, and the like.

A primary component of delivery QoE measurement is a
player buffer model, which estimates the amount of data in
the client’s playback buffer at any point in time in the media
session. It uses these estimates to model location duration
and frequency of stall events.

Not all embodiments of the described slow-path module
need include all elements described in the example embodi-
ment of FIG. 6. For example, some embodiments of the
slow-path module may include only a transport layer pro-
cessor and application layer processor. Moreover, in some
embodiments, slow-path module 520 may be implemented
in a network device that omits certain elements of network
device 400. For example, in some embodiments, slow-path
module 520 may be implemented in a network device that
lacks a media processing element 420.

Reference is next made to FIG. 7 illustrating a state
diagram for a communication flow (e.g., “TCP flow”) man-
aged by a slow-path module, such as slow-path module 520
of FIGS. 5 and 6. More particularly, each TCP communi-
cation flow can be managed by a transport layer processor,
such as transport layer processor 610. Each transport layer
processor may manage a plurality of TCP communication
flows—in some cases thousands of flows—between a client
and server, such as host 110 and host 130 of FIG. 1A. Each
TCP communication flow may occupy a passive identify
state 710, a passive forward state 720, an active identify state
730, an active modify state 740 and an active forward state
750.

A TCP communication flow may be initialized 705 in
various configurations. In some cases, transport layer pro-
cessor 610 may be configured to initialize TCP flows in a
passive identify state 710 by default. The passive identify
state 710 is a forwarding state in which flow data is not
modified, but in which slow-path module 520 (through
transport layer processor 610) monitors the TCP connection
state between the communicating hosts, analyzes flow data,
and attempts to determine whether to place the current flow
into an active state based on session demographics or some
other control signal. In the passive identify state 710, the
slow-path module 520 neither modifies packet payloads nor
injects packets into a flow.
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While a TCP flow is in the passive identify state 710,
slow-path module 520 can analyze whether a predetermined
content type is contained in the flow data (e.g., a predeter-
mined content type that corresponds with data to be modi-
fied), and decide whether to place the current flow into an
active state so that the packet can be modified. The prede-
termined content type may be video data or a data charac-
teristic of a media session (e.g., media metadata).

One example heuristic for determining whether the packet
contains a predetermined content type may be based on the
destination port to which a network packet is addressed. For
example, the host port of the data packer may be compared
to a known list of ports that are known to be associated with
media sessions to determine whether a predetermined con-
tent type is contained in the data packet. Examples of such
media-associated ports may include ports 80, 81, 82, 8080,
8081, 8090 for HTTP applications, ports 554, 8554 for RTSP
applications and port 1935 for RTMP applications.

TCP flows may also be placed into an active state, such as
the active identify state 730, in response to a control signal.
The control signal may be manually triggered by, for
example, a human operator. In other cases, the control signal
may originate from other elements of the network device
400. For example, a “time of day” policy may cause a policy
engine to transmit a control signal indicating that some or all
TCP flows should be placed into an active identify state 730
at certain times of the day. In another example, the NRM
module may transmit a control signal indicating that some or
all TCP flows should be placed into an active identify state
730 in response to the detection of network congestion.

More generally, a content identifier of slow-path module
520 may be used to reassemble flow data, which can then be
analyzed to identify session demographics, such as applica-
tion headers (e.g. HI'TP Content-Type), message body (e.g.
a video file), content metadata (e.g., video resolution). The
session demographics can be used to determine if the current
flow should be switched from the passive identify state 710
to an active state, under the direction of local policy engine
640.

If the slow-path module 520 determines that the current
data flow data does not contain a predetermined content
type, the current flow may instead be placed into a passive
forward state 720. In the passive identify state 710, an
emphasis may be placed on minimizing processing latency.
Accordingly, packet and flow analysis may be limited to
heuristics that require relatively little computational effort.

In the passive forward state 720 packets are forwarded to
the network interface with minimal latency, which generally
indicates that no additional processing of the packets is
performed. Effectively, while a TCP flow is in the passive
forward state 720, the slow-path module 520 behaves simi-
larly to the fast-path module 510.

In some cases, passive forward state 720 may be a default
fallback state for a TCP flow, and may be entered from state
710 in case of any error in the passive identify state 710.
Such errors may include parsing errors, software exceptions,
etc.

While a TCP flow is in the passive identify 710 or passive
forward state 720, slow-path module 520 generally inspects
all packets delivered between the two hosts, buffering them
locally while, for example, the application layer processor
620 and/or container layer processor 630 analyzes the
bytestreams, and then forwards the packets in unmodified
form to the intended recipient host. In many cases, the TCP
flow will never exit the passive state, allowing the two
remote hosts to communicate directly with each other using
only minimal resources of the slow-path module 520. For
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example, if the slow-path module 520 is implemented as a
caching HTTP gateway, all TCP flows may be kept in a
passive state for all connections where the requested content
is not available in a local cache. This greatly reduces the
amount of processing required at the intermediate device,
since the remote hosts manage the responsibility of sending
acknowledgments, timing transmissions, and other actions
associated with TCP communication.

In some cases, it may be difficult to make a determination
regarding the content of a TCP flow within a short prede-
termined identification period. For example, exceeding the
identification period may result in the sending host deciding
to retransmit packets because no ACK packets have been
received. Accordingly, TCP flows may sometimes be placed
in the active identify state 730 from a passive identify state
710 in the event that the slow-path module 520 is unable to
determine whether the current data flow contains a prede-
termined content type within a predetermined identification
period, or if slow-path module 520 has identified a prede-
termined content type, but needs more payload data to
determine whether modification of the flow is required.

In both the passive identify state 710 and active identify
state 730, slow-path module 520 can forward payload data
between host devices. However, in both cases, slow-path
module 520 can restrict forwarding of payload data until it
determines whether to modify the payload content. Accord-
ingly, the passive identify 710 and active identify states 730
can be thought of as an intelligent control valve, in which
bytestreams are reassembled for analysis. Upon completing
analysis, packets can continue to be forwarded in unmodi-
fied form (e.g., passive or active) or in modified form (e.g.,
active).

This restriction on forwarding payload data is particularly
significant in cases where metadata about the size of a
transmission is sent as part of a file header, and where the
recipient host device will expect to receive data correspond-
ing to the identified size. For example, a video the from an
online streaming website may contain a media file size in the
first packet that is transmitted. Accordingly, to preserve the
ability to modify the TCP flow without disrupting the state
of the TCP connection at either the sending host device or
the recipient host device, the network device should defer
forwarding payload data to the recipient host device until it
can determine whether to modity the payload (and the first
packet).

In an active identify state 730 (and in the active modify
740 or active forward states 750 described below), the
slow-path module 520 separates the existing connection
between the remote hosts into two independent connections,
to allow it to transmit ACK packets to the sending host.

The active identify state 730 can be thought of as func-
tionally similar to a conventional proxy, in that the network
device establishes independent TCP connections with each
host device, and manages communications between the two.

In some cases, a TCP flow may be placed in the active
identify state 730 if the TCP connection reaches a deadlock.
The deadlock may be caused by loss of segments of packets
transmitted by the first and/or second hosts. For example,
when a packet is dropped or lost, the receiving host sends
duplicate acknowledgments (ACKs) to trigger a fast retrans-
mit of the packet by the sending host. This prevents the
sending host from experiencing a retransmit timeout and
going back to a slow start. This may cause network perfor-
mance degradation. To overcome this, the slow-path module
520 may place the TCP flow in the active identify state 730
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whereupon the packet payload may either be forwarded (in
active forward state 750) or modified (in active modify state
740).

In some other cases, the deadlock may occur because of
network congestion. For example, if the application layer
requires N octets of data before being able to forward any of
it, and the congestion window is less that N, then a deadlock
may occur.

Active modify state 740 is a full-control state in which the
current data flow may be modified based on local or global
policies, as discussed herein. For example, modification may
include transcoding a media stream.

Slow-path module 520 may transition a TCP flow into the
active modify state 740 if the slow-path module 520 makes
a determination, for example in the passive identify state 710
or the active identify state 730, that the network data
contains the predetermined content type and should be
modified.

Active forward state 750 is an auto-forward state where
the packet payloads are forwarded to the network interface
by the slow-path module 520.

The active forward state 750 is similar to the passive
forward state 720, and may be entered into if an active
identification timeout period expires or the slow-path mod-
ule 520 determines, while in the active identify state 730,
that some or all of the current data flow should remain
unmodified.

In active forward state 750, packets are forwarded to the
network interface with minimal latency, which generally
indicates that no additional processing of the packets is
performed. Effectively, while in the active forward state 750,
the connection between the two hosts has been proxied, but
no modification of payload content is taking place.

In some cases, active forward stare 750 may be a default
fallback state, and may be entered from state 730 (or state
740) in case of any error in the active identify state 730.
Such errors may include parsing errors, software exceptions,
etc.

Generally, by analyzing the connection between the two
remote hosts while a TCP flow is in the passive identify state
710, and carefully restricting the packets delivered between
the hosts until after the bytestream has been analyzed, for
example, by the application layer processor 620 and/or
container layer processor 630, the slow-path module 520 can
defer the decision to place the TCP flow into an active state.
The TCP flow may not be placed into an active state until
well into the data transfer phase (or even until connection
teardown, although there tends to be little value entering an
active state at this point).

For applications where modifying the bytestream is only
necessary in a small percentage of cases, the performance
increase of leaving most TCP flows in a passive state can be
very beneficial. For example, if network device 400 (and
slow-path module 520) is configured to provide a caching
HTTP gateway, it might only place a TCP flow in an active
state if it detects that it could service a user request from a
local cache, instead of forwarding the original request
unmodified. Accordingly, the network device may simply
place the individual selected TCP flow in an active state,
which allows the application to send the requested content
without further involving the remote host. Meanwhile, other
TCP flows can remain in a passive state, which does not
require maintenance of separate TCP connections by the
network device.

Reference is next made to FIG. 8A, illustrating a com-
munication flow diagram 800 for a slow-path module, such
as the slow-path module 520, for a TCP flow in a passive
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state. In a passive forward state, all packets are forwarded
from one host to another without modification by an inter-
mediate device (e.g., a network device 815) and no new
packets are created or inserted into the flow. In a passive
identify state, connection establishment packets are for-
warded from one host to another, but the intermediate device
restricts forwarding of payload data, while it undergoes
analysis.

System 800 comprises a first host 810, a second host 820,
and a network device 815. The network device 815 further
comprises a passive transmission control module (passive
TCM) 830 associated with the first host 810, a passive TCM
840 associated with the second host 820 and a content
identifier module 850. Each passive TCM may be a software
or hardware module. In the case of a software-based passive
TCM, each such passive TCM may be a separate process
executed by a processor of the network device 815, which is
spawned when a new flow is to be analyzed.

As illustrated, packets, such as a request for multimedia
content, are transmitted from the first host 810 destined for
the second host 820. Within slow-path module, these packets
may be copied and forwarded further, generally following a
path 854 as illustrated in FIG. 8A using a broken line.
Accordingly, request data is copied to passive TCM 830,
passive TCM 840 and content identifier 850. In some cases,
packets sent by first host 820 may be stored by passive TCM
830.

Response packets are transmitted from the second host
820 to the first host 810. Within slow-path module, these
packets may be copied and forwarded further, generally
following a path 856 as illustrated in FIG. 8A using a
stippled line. Accordingly, response data is copied to passive
TCM 830, passive TCM 840 and content identifier 850. In
some cases, packets sent by second host 820 may be stored
by passive TCM 840.

Passive transmission control modules 830 and 840 may be
software modules that observe all network traffic sent and
received by the first and second hosts. Generally, the passive
transmission control modules and content identifier 850
execute some or all functions associated with the passive
identify 710 or passive forward state 720, as described with
reference to FIG. 7.

The passive transmission control module 830 observes
traffic sent and received by the first host 810. The passive
transmission control module 840 observes traffic sent and
received by the second host 820. Each TCM maintains an
estimate of the TCP connection state of both remote hosts.
Preferably, each TCM maintains the exact state of the
transport-layer conversation, which can be determined from
the packets exchanged between the two hosts.

The packets sent and received by each host may be
accounted for in the form of counts, such as, for example, a
count of the number of packets and bytes received per
interface, per protocol, per location or in total. Other counts
may include packets and bytes forwarded unmodified, pack-
ets and bytes received in the active state (such as in active
identify 730 and active modify state 740 from the passive
identify state 710), packets and bytes forwarded in the active
state (such as in active forward state 750), and packets and
bytes dropped per input interface etc.

Passive transmission control modules 830 and 840 may
also prepare and update models of the data sent and received
by the first 810 and second 820 hosts. For example, passive
transmission control modules 830, 840 may receive TCP
packets and update their states in two ways: by informing the
model of the sending stack that it has sent the packet; and by
informing the model of the receiving stack that it may
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receive the packet depending on whether or not the packet
gets dropped on its way to the receiver.

Passive transmission control modules 830 and 840 also
send a copy of data to the content identifier 850. Content
identifier 850 is a module that analyzes the data received by
the passive transmission control module 830 and 840 to
determine if the connection between the hosts should be
manipulated.

The decision to manipulate the connection between the
hosts may be based on the determination of whether the
incoming packets contain a predetermined content type, as
described herein.

In some cases, the TCP connection between the hosts may
be manipulated if the TCP connection is in a deadlock, as
discussed above. In some other cases, the TCP connection
may be manipulated if more analysis is required to deter-
mine whether the packet should be modified or not.

Content identifier 850 may comprise or be coupled to one
or more of the transport processor 610, application processor
620 and container processor 630 of the slow-path module of
FIG. 6. Generally, content identifier 850 may parse, process
and analyze the packet payload at the application layer
and/or container layer.

Reference is next made to FIG. 8B, illustrating a com-
munication flow diagram 800 for a slow-path module, such
as the slow-path module 520, for a TCP flow in an active
mode. In an active state, the TCP connection between the
hosts is split such that two independent TCP connections are
created on both sides of the network device to each host.

In the active mode, system 800 comprises an active
transmission control module (active TCM) 870 correspond-
ing to the first host 810, an active TCM 880 corresponding
to the second host 820 and a content modifier 890. Each
active TCM may be a software or hardware module. In the
case of a software-based active TCM, each such active TCM
may be a separate process executed by a processor of the
network device 815, which is spawned when a new flow is
to be analyzed, or when entering into the active identify state
730 or active modify state 740, as described with reference
to FIG. 7.

In the active mode, a direct TCP connection between the
first host 810 and the second host 820 is replaced with a
connection from the first host 810 to the network device 815
and from the network device 815 to the second host 820.

A request packet from host 810 follows a path 864 as
illustrated in FIG. 8B using a broken line. Accordingly, the
request packet is forwarded successively to active TCM 870,
content modifier 890, active TCM 880, and may be modified
by any of these, before forwarding to host 820.

Conversely, a response packet from host 820 follows a
path 866 as illustrated in FIG. 8B using a stippled line. The
response packet is forwarded successively to active TCM
880, content modifier 890, active TCM 870, and may be
modified by any of these (particularly content modifier 890),
before forwarding to host 810.

Each side of the connection between the network device
815 and the first and the second hosts is maintained as a
distinct, intermediate socket by active transmission control
modules 870 and 880.

Active transmission control modules 870 and 880 may be
software modules that receive the state estimate provided by
the passive TCMs 830 and 840 to manipulate the existing
TCP connection midstream.

Generally, the active transmission control modules and
content modifier 890 execute some or all functions associ-
ated with the active identify state 730 and active modify
state 740, as described with reference to FIG. 7.
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Active TCM 880 corresponding to the first host 810
receives the state estimate for the first host from passive
TCM 830. Active TCM 870 corresponding to the second
host 820 receives the state estimate for the second host from
passive TCM 840. Since each passive TCM maintains
accurate TCP connection state information while in the
passive state, the corresponding active TCM similarly has
accurate TCP connection state information and can, at any
time, transition into acting as a replacement or substitute for
the remote host. This allows slow-path module 520 to
passively identify traffic for some time using the passive
TCMs, and subsequently use the stored connection state
information to split the TCP connection in two using the
active TCMs, without disrupting the original connection at
either host. Thereafter, slow-path module 520 can intercept
data sent between the hosts and simulate the original TCP
connection by modifying packets as needed.

In the active mode, the current TCP flow may be dropped,
left unchanged or modified. In cases where the TCP flow is
placed into an active modify state 740 because of the
determination that the incoming packets contain the prede-
termined content type (or in response to a control signal),
active TCMs 870 and 880 may route the network data to the
content modifier 890, which modifies the network data to
generate modified network data.

Content modifier 890 may implement access control (e.g.,
determine whether to allow the media session to continue),
re-multiplexing, request-response modification, client-
aware buffer shaping, transcoding, and adaptive streaming
control, in addition to the more conventional per-flow action
such as marking, policing/shaping etc., as described herein,
to generate the modified network data.

In cases where an active state is triggered not because of
the determination that the incoming packets contain the
predetermined content type, but because of other reasons,
such as a deadlocked TCP connection, the active TCMs 870
and 880 may further process the incoming packets and
determine whether to modify the packets to generate modi-
fied network data.

In some cases, active TCMs 870 and 880 may, upon
further packet analysis, determine not to modify the flow
data. In such cases, the network data can nevertheless be
routed to the content modifier 890, which can leave the flow
data unchanged.

The content modifier 890 may modify the payload data
by, for example, transcoding when the slow-path module is
in the active modify state 740. Content modifier 890 may
alternatively leave the packer unmodified if the slow-path
module is in an active forward state 750.

Referring now to FIG. 9A, there is illustrated a data flow
diagram for an example slow-path module, such as slow
path module 520, where the TCP flow remains in a passive
state throughout the life of the TCP connection.

Connection establishment for connection C begins at C1
as host device 110 transmits a connection establishment
request (SYN packet). The SYN packet is intercepted by
slow-path module 520 and forwarded to host device 130.

Host device 130 receives the SYN packet and transmits a
SYN ACK acknowledgment packet to host device 110 at C2.
The SYN ACK packet is intercepted by slow-path module
520 and forwarded to host device 110, establishing the
connection C between host device 110 and host device 130.

Accordingly, during connection establishment, the slow-
path module 520 largely stays out the way, allowing the two
remote host devices to communicate directly with each other
to establish a connection. Instead of intercepting the original
SYN and opening a separate TCP connection (like a con-
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ventional TCP proxy would), the slow-path module 520
simply analyzes the connection as it is established, keeping
track of TCP connection state (e.g. the initial sequence
numbers used by both hosts, the TCP options negotiated,
etc.) in order to support a possible transition to active mode
at a later time. Once the remote host devices have exchanged
SYNs and ACKs, the connection is established. In many
real-world scenarios, some connections may never become
fully established or may be torn down without ever exchang-
ing data. In these cases, slow-path module 520 can simply
discard the initial state of the TCP flow once the connection
is torn down and avoid most of the processing usually
associated with establishment and teardown.

Once connection C is established, data can be transferred
between the host devices 110 and 130.

At C4, C5 and C6, host device 110 transmits data packets
912, 914 and 916, respectively, which are intercepted by
slow-path module 520. Data packets 912, 914 and 916 from
host device 110 are received by a passive TCM (e.g., passive
TCM 830) and added to a local queue where they are held
temporarily while the data encapsulated by the packets is
processed by the content identifier (e.g., content identifier
850). Once the data has been analyzed, the slow-path
module 520 decides whether to:

Forward the packet(s) unchanged, keeping the bytestream

unchanged;

Place the TCP flow in an active state and modify the

bytestream as desired; or

Continue buffering the packet(s) locally and wait for

additional data packets before making a determination.

Since the TCP flow is still in a passive state, no additional
packets (or acknowledgments) are generated. Since the data
packets are held by slow-path module 520, this also prevents
host device 130 from generating acknowledgements. The
net effect of this is bursts of increased latency while the
application identifies traffic; if no managed carefully, these
bursts can negatively impact network throughput by skew-
ing the sending host’s latency estimates, causing unneces-
sary retransmissions, etc. To avoid this, the slow-path mod-
ule 520 can enforce strict limits on the amount of time and/or
data that can be held for identification.

The length of time that the packets are held constitutes a
decision window 910, which has the effect of introducing
some initial latency at the recipient host device. For a typical
sender, the held packets will be sent in less than a few
milliseconds, which means the burst of latency is unnotice-
able by the hosts. If the decision window 910 is allowed to
exceed a predetermined identification period, this may sig-
nificantly skew the sending host device’s latency estimates,
cause unnecessary retransmissions, and the like. To avoid
this, slow-path module 520 may limit the length of the
decision window 910 to less than the predetermined iden-
tification period, failing which it may place the TCP flow
into an active identify state (not shown in FIG. 9A).

Although the example of FIG. 9A illustrates only one
decision window 910, there may be a plurality of decision
windows 910 while the TCP flow is in a passive state. For
example, slow-path module 520 may hold one more packets
for a period generally less than or equal to the decision
window, forward the held packets, and then hold one or
more additional packers in a further decision window.

It slow-path module 520 determines that the TCP flow
should remain in the passive identify state 710, or should be
placed into the passive forward state 720, data packets 912,
914 and 916 are forwarded to host device 130 in unmodified
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form at C4', C5' and C6', respectively. Host device 130
responds to receipt of the data packets by transmitting ACK
packets at C7, C8 and C9.

Subsequently, host device 110 can transmit further data,
for example at C10, and finally teardown the connection
beginning at C12.

Accordingly, when a TCP flow remains in a passive state,
slow-path module 520 observes connection establishment,
identifies and forwards traffic during data transfer, and
watches connection teardown. While the TCP flow is in the
passive state, slow-path module 520 does not modify any
payload data, inject packets, or issue any local acknowl-
edgements. Since connection C has not been split, the
remote hosts handle communication as if slow-path module
520 were not even present. The only noticeable difference
this and a completely unmodified TCP conversation is the
burst of latency associated with the proxy decision window
910.

Referring now to FIG. 9B, there is illustrated a data flow
diagram for an example slow-path module, such as slow
path module 520, where the TCP flow is placed into an
active state during the TCP connection.

Connection establishment for connection D begins at D1
as host device 110 transmits a connection establishment
request (SYN packet). The SYN packet is intercepted by
slow-path module 520 and forwarded to host device 130.

Host device 130 receives the SYN packet and transmits a
SYN ACK acknowledgment packet to host device 110 at D2.
The SYN ACK packet is intercepted by slow-path module
520 and forwarded to host device 110, establishing the
connection D between host device 110 and host device 130.

At D4, D5 and D6, host device transmits data packets 922,
924 and 926, respectively, which are intercepted by slow-
path module 520. Data packets 922, 924 and 926 from host
device 110 are received by a passive TCM (e.g., passive
TCM 830) and added to a local queue where they are held
temporarily while the data encapsulated by the packets is
processed by the content identifier (e.g., content identifier
850).

In the example of FIG. 9B, the content identifier deter-
mines that the TCP flow should be placed in an active state
(e.g., active modify state 740).

Accordingly, slow-path module 520 creates two new
connections E and F, each initially sharing the current TCP
connection state of connection D. Connection E continues
between host device 110 and slow-path module 520, with an
active TCM simulating host device 130. Similarly, connec-
tion F continues between slow-path module 520 and host
device 130, with an active TCM simulating host device 110.

Accordingly, at F1, F2 and F3, slow-path module 520
transmits modified data packets 932, 934 and 936. Packets
932 to 936 may have been modified, for example, to
transcode video data contained therein. Host device 130
receives the modified packets and transmits ACK packets at
F4, F5 and Feé, respectively. The ACK packets are received
by slaw-path module 520 and not forwarded to host device
110.

Independently, in connection E, slow-path module 520
generates and transmits ACK packets 942, 944 and 946 to
host device 110, acknowledging receipt of packets 922, 924
and 926. The data transfer continues in this manner until host
device 110 transmits a FIN packet intercepted by slow-path
module 520 at E6. A corresponding FIN packet is generated
and transmitted from slow-path module 520 to host device
130 at F9. Teardown of both connections E and F continues
as shown in FIG. 9B.
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In both the examples of FIGS. 9A and 9B, slow-path
module 520 initially allows a first connection to be estab-
lished between host device 110 and host device 130 for a
TCP flow. This first connection is directly between the host
devices. In contrast to conventional TCP proxies, slow-path
module 520 does not initially break the TCP flow into two
separate TCP connections, with the slow-path module 520 as
intermediary. Following an initial analysis, slow-path mod-
ule 520 can then determine whether to allow the first
connection to continue without intervention by slow-path
module 520, or whether to place the TCP flow into separate
TCP connections, which it can do without disrupting the
TCP connection at either host device.
The present invention has been described here by way of
example only. Various modification and variations may be
made to these exemplary embodiments without departing
from the scope of the invention. The scope of the claims
should not be limited by the described embodiments and
examples, but should be given the broadest interpretation
consistent with the description as a whole.
We claim:
1. A method of optimizing data transmission for a current
data flow from a first host to a second host via a network
device, the network device comprising a processor and a
memory, the method comprising:
the network device allowing establishment of a first TCP
connection between the first host and the second host
via the network device for the current data flow,
wherein establishment of the first TCP connection
comprises the processor spawning a first passive trans-
mission control module process corresponding to the
first host, and a second passive transmission control
module process corresponding to the second host,
wherein the first passive transmission control module
process maintains first connection state information for
the first host, and wherein the second passive transmis-
sion control module process maintains second connec-
tion state information for the second host, and wherein
each of the first and second connection state informa-
tion comprises TCP sequence numbering;
the processor executing the first and second passive
transmission control module processes to maintain a
model of connection state based on data sent or
received in the first TCP connection, wherein the model
of the connection state is initially in a passive identify
state;
the processor executing the first passive transmission
control module to send data from the first host to both
a content identifier and the second host;

the processor executing the second passive transmission
control module to send data from the second host to
both the content identifier and the first host;

based on the data sent or received in the first TCP

connection, the processor executing the content iden-
tifier to determine that an active connection state is to
be used for the current data flow, and updating the
model of connection state to the active connection
state;

in response to determining that the active connection state

is to be used, the processor spawning a first active
transmission control module process corresponding to
the first host, and a second active transmission control
module process corresponding to the second host;

the processor executing the first active transmission con-

trol module process to receive the first connection state
information from the first passive transmission control
module process, and executing the second active trans-
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mission control module process to receive the second
connection state information from the second passive
transmission control module process;

the processor splitting the first TCP connection into a

second TCP connection between the first host and the
network device and a third TCP connection between the
second host and the network device;

the processor executing the second active transmission

control module process to emulate the first host in the
third TCP connection using the second connection state
information;

the processor executing the first active transmission con-

trol module process to emulate the second host in the
second TCP connection using the first connection state
information;

the processor executing the first active transmission con-

trol module process to receive data from the first host
and to send the data from the first host to a content
modifier;

the processor executing the second active transmission

control module process to receive data from the second
host and to send the data from the second host to the
content modifier;

the processor executing the content modifier to process

the data from the first host and to send the processed
data from the first host to the second active transmis-
sion control module process;

the processor executing the content modifier to process

the data from the second host and to send the processed
data from the second host to the first active transmis-
sion control module process; and

the processor executing the first active transmission con-

trol module process to send the processed data from the
second host to the first host, and executing the second
active transmission control module process to send the
processed data from the first host to the second host.

2. The method of claim 1, further comprising, when the
active connection state is not to be used, remaining in the
passive identify state for the current data flow, wherein in the
passive identify state the current data flow continues using
the first TCP connection.

3. The method of claim 1, wherein determining that the
active connection state is to be used for the current data flow
comprises:

the processor executing the first passive transmission

control module to hold delivery of the data from the
first host to the second host during a decision window;
and

the processor executing the second passive transmission

control module to hold delivery of the data from the
second host to the first host during the decision win-
dow.

4. The method of claim 3, further comprising:

timing the decision window; and

entering the active connection state for the current data

flow when a length of the determining exceeds a
predetermined identification period.

5. The method of claim 1, wherein the determining is
based on a control signal that indicates the active connection
state is to be used.

6. The method of claim 1, further comprising analyzing at
least one data packet in the current data flow, and wherein
the determining is based on the analysis of the at least one
data packet.

7. The method of claim 6, wherein the at least one data
packet comprises a plurality of packets, and wherein the
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analyzing comprises assembling the plurality of packets to
provide payload data for the analyzing.

8. The method of claim 1, wherein, when in the active
connection state, the method further comprises determining
that the current flow data is to be modified.

9. The method of claim 8, wherein the current flow data
comprises video data, and wherein the modifying comprises
transcoding the video data.

10. A network device for optimizing data transmission for
a current data flow from a first host to a second host, the
network device comprising:

a memory;

at least one communication interface;

a processor, the processor configured to:

allow establishment of a first TCP connection between
the first host and the second host via the network
device for the current data flow, wherein establish-
ment of the first TCP connection comprises the
processor spawning a first passive transmission con-
trol module process corresponding to the first host,
and a second passive transmission control module
process corresponding to the second host, wherein
the first passive transmission control module process
maintains first connection state information for the
first host, and wherein the second passive transmis-
sion control module process maintains second con-
nection state information for the second host, and
wherein each of the first and second connection state
information comprises TCP sequence numbering;

execute the first and second passive transmission con-
trol module processes to maintain a model of con-
nection state based on data sent or received in the
first TCP connection, wherein the model of the
connection state is initially in a passive identify state;

execute the first passive transmission control module to
send data from the first host to both a content
identifier and the second host;

execute the second passive transmission control mod-
ule to send data from the second host to both the
content identifier and the first host;

based on the data sent or received in the first TCP
connection, execute the content identifier to deter-
mine that an active connection state is to be used for
the current data flow, and update the model of
connection state to the active connection state;

in response to determining that the active connection
state is to be used, spawn a first active transmission
control module process corresponding to the first
host, and a second active transmission control mod-
ule process corresponding to the second host;

execute the first active transmission control module
process to receive the first connection state informa-
tion from the first passive transmission control mod-
ule process, and execute the second active transmis-
sion control module process to receive the second
connection state information from the second pas-
sive transmission control module process;

split the first TCP connection into a second TCP
connection between the first host and the network
device and a third TCP connection between the
second host and the network device;

execute the second active transmission control module
process to emulate the first host in the third TCP
connection using the second connection state infor-
mation;
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execute the first active transmission control module
process to emulate the second host in the second TCP
connection using the first connection state informa-
tion

execute the first active transmission control module
process to receive data from the first host and to send
the data from the first host to a content modifier;

execute the second active transmission control module
process to receive data from the second host and to
send the data from the second host to the content
modifier;

execute the content modifier to process the data from
the first host and to send the processed data from the
first host to the second active transmission control
module process;

execute the content modifier to process the data from
the second host and to send the processed data from
the second host to the first active transmission con-
trol module process; and

execute the first active transmission control module
process to send the processed data from the second
host to the first host, and execute the second active
transmission control module process to send the
processed data from the first host to the second host.

11. The network device of claim 10, wherein the processor
is further configured, when the active connection state is not
to be used, to remain in the passive identify state for the
current data flow, wherein in the passive identify state the
current data flow continues using the first TCP connection.

12. The network device of claim 10, wherein

wherein determining that the active connection state is to

be used for the current data flow comprises:

the processor executing the first passive transmission
control module to hold delivery of the data from the
first host to the second host during a decision win-
dow; and

the processor executing the second passive transmis-
sion control module to hold delivery of the data from
the second host to the first host during the decision
window.

13. The network device of claim 12, wherein the proces-
sor is further configured to:

time the decision window; and

enter the active connection state for the current data flow

when a length of the determining exceeds a predeter-
mined identification period.

14. The network device of claim 10, wherein the at least
one processor determines whether to use the active connec-
tion state based on a control signal that indicates the active
connection state is to be used.

15. The network device of claim 10, wherein the at least
one additional processor is further configured to analyze at
least one data packet in the current data flow, and determine
whether to use the active connection state based on the
analysis of the at least one data packet.

16. The network device of claim 15, wherein the at least
one data packet comprises a plurality of packets, and
wherein the at least one processor assembles the plurality of
packets to provide payload data for the analyzing.

17. The network device of claim 10, wherein, when in the
active connection state, the at least one processor determines
that the current flow data is to be modified.

18. The network device of claim 17, wherein the current
flow data comprises video data, and wherein the at least one
processor is configured to transcode the video data.

#* #* #* #* #*
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